Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986361

RESUMO

Rose rosette disease (RRD) caused by the rose rosette emaravirus (RRV) and transmitted by the eriophyid mite Phyllocoptes fructiphilus (Pf), both native to North America, has caused significant damage to roses over the last several decades. As cultural and chemical control of this disease is difficult and expensive, a field trial was established to systematically screen rose germplasm for potential sources of resistance. One hundred and eight rose accessions representing the diversity of rose germplasm were planted in Tennessee and Delaware, managed to encourage disease development, and evaluated for symptom development and viral presence for three years. All major commercial rose cultivars were susceptible to this viral disease to varying levels. The rose accessions with no or few symptoms were species accessions from the sections Cinnamomeae, Carolinae, Bracteatae, and Systylae or hybrids with these. Among these, some were asymptomatic; they displayed no symptoms but were infected by the virus. Their potential depends on their ability to serve as a source of viruses. The next step is to understand the mechanism of resistance and genetic control of the various sources of resistance identified.

2.
PLoS One ; 17(9): e0274208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156596

RESUMO

Current diagnostic methods for wooden breast and white striping, common breast muscle myopathies of modern commercial broiler chickens, rely on subjective examinations of the pectoralis major muscle, time-consuming microscopy, or expensive imaging technologies. Further research on these disorders would benefit from more quantitative and objective measures of disease severity that can be used in live birds. To this end, we utilized untargeted metabolomics alongside two statistical approaches to evaluate plasma metabolites associated with wooden breast and white striping in 250 male commercial broiler chickens. First, mixed linear modeling was employed to identify metabolites with a significant association with these muscle disorders and found 98 metabolites associated with wooden breast and 44 metabolites associated with white striping (q-value < 0.05). Second, a support vector machine was constructed using stepwise feature selection to determine the smallest subset of metabolites with the highest categorization accuracy for wooden breast. The final support vector machine achieved 94% accuracy using only 6 metabolites. The metabolite 3-methylhistidine, which is often used as an index of myofibrillar breakdown in skeletal muscle, was the top metabolite for both wooden breast and white striping in our mixed linear model and was also the metabolite with highest marginal prediction accuracy (82%) for wooden breast in our support vector machine. Overall, this study identified a candidate set of metabolites for an objective measure of wooden breast or white striping severity in live birds and expanded our understanding of these muscle disorders.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/fisiologia , Masculino , Carne/análise , Doenças Musculares/metabolismo , Músculos Peitorais/metabolismo , Doenças das Aves Domésticas/metabolismo
3.
Sci Rep ; 11(1): 6785, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762630

RESUMO

Wooden breast (WB) and white striping (WS) are highly prevalent and economically damaging muscle disorders of modern commercial broiler chickens characterized respectively by palpable firmness and fatty white striations running parallel to the muscle fiber. High feed efficiency and rapid growth, especially of the breast muscle, are believed to contribute to development of such muscle defects; however, their etiology remains poorly understood. To gain insight into the genetic basis of these myopathies, a genome-wide association study was conducted using a commercial crossbred broiler population (n = 1193). Heritability was estimated at 0.5 for WB and WS with high genetic correlation between them (0.88). GWAS revealed 28 quantitative trait loci (QTL) on five chromosomes for WB and 6 QTL on one chromosome for WS, with the majority of QTL for both myopathies located in a ~ 8 Mb region of chromosome 5. This region has highly conserved synteny with a portion of human chromosome 11 containing a cluster of imprinted genes associated with growth and metabolic disorders such as type 2 diabetes and Beckwith-Wiedemann syndrome. Candidate genes include potassium voltage-gated channel subfamily Q member 1 (KCNQ1), involved in insulin secretion and cardiac electrical activity, lymphocyte-specific protein 1 (LSP1), involved in inflammation and immune response.


Assuntos
Alelos , Predisposição Genética para Doença , Fenótipo , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/genética , Animais , Biomarcadores , Galinhas , Dosagem de Genes , Estudo de Associação Genômica Ampla , Genômica/métodos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Sci Rep ; 11(1): 3968, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597613

RESUMO

Differential abundance of allelic transcripts in a diploid organism, commonly referred to as allele specific expression (ASE), is a biologically significant phenomenon and can be examined using single nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment patterns, but all three tissues showed enrichment for pathways involved in translation.


Assuntos
Expressão Gênica/genética , Especificidade de Órgãos/genética , Análise de Sequência de RNA/métodos , Alelos , Animais , Galinhas/genética , Polimorfismo de Nucleotídeo Único/genética , Aves Domésticas , Locos de Características Quantitativas/genética , RNA-Seq/métodos , Software
5.
Front Physiol ; 11: 169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231585

RESUMO

Wooden breast is one of several myopathies of fast-growing commercial broilers that has emerged as a consequence of intensive selection practices in the poultry breeding industry. Despite the substantial economic burden presented to broiler producers worldwide by wooden breast and related muscle disorders such as white striping, the genetic and etiological underpinnings of these diseases are still poorly understood. Here we propose a new hypothesis on the primary causes of wooden breast that implicates dysregulation of lipid and glucose metabolism. Our hypothesis addresses recent findings that have suggested etiologic similarities between wooden breast and type 2 diabetes despite their phenotypic disparities. Unlike in mammals, dysregulation of lipid and glucose metabolism is not accompanied by an increase in plasma glucose levels but generates a unique skeletal muscle phenotype, i.e., wooden breast, in chickens. We hypothesize that these phenotypic disparities result from a major difference in skeletal muscle glucose transport between birds and mammals, and that the wooden breast phenotype most closely resembles complications of diabetes in smooth and cardiac muscle of mammals. Additional basic research on wooden breast and related muscle disorders in commercial broiler chickens is necessary and can be informative for poultry breeding and production as well as for human health and disease. To inform future studies, this paper reviews the current biological knowledge of wooden breast, outlines the major steps in its proposed pathogenesis, and examines how selection for production traits may have contributed to its prevalence.

6.
Front Physiol ; 11: 304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317988

RESUMO

Wooden breast syndrome is a widespread and economically important myopathy and vasculopathy of fast growing, commercial broiler chickens, primarily affecting birds with high feed efficiency and large breast muscle yield. To investigate potential systemic physiological differences between birds affected and unaffected by wooden breast, a total of 103 market-age Cobb 500 broilers were sampled for 13 blood parameters and the relative weights of the pectoralis major muscle, pectoralis minor muscle, external oblique muscle, wing, heart, lungs, liver, and spleen. Blood analysis was performed on samples taken from the brachial vein of live birds and revealed significant differences in venous blood gases between affected and unaffected chickens. Chickens with wooden breast exhibited significantly higher potassium (K+) and lower partial pressure of oxygen (pO2), oxygen saturation (sO2), and pH. Additionally, affected males had significantly higher partial pressure of carbon dioxide (pCO2) and total carbon dioxide (TCO2) than unaffected males. Wooden breast affected broilers also possessed a significantly heavier pectoralis major muscle and whole feathered wing compared to unaffected broilers. Blood gas disturbances characterized by high pCO2 and low pH are indicative of insufficient respiratory gas exchange, suggesting that wooden breast affected broilers have an elevated metabolic rate that may also be inadequately compensated due to cardiovascular deficiencies such as poor venous return or respiratory insufficiency. Lung tissues from 12 birds with extreme sO2 values were subsequently examined to assess whether lung pathology contributed to the observed blood gas disturbance. Comparison of lung morphology between affected and unaffected birds revealed no apparent differences that could contribute to decreased parabronchial gas exchange. However, an interesting finding was the detection of pulmonary phlebitis in one of the wooden breast-affected samples consistent with vascular changes observed in pectoralis major muscle exhibiting the wooden breast phenotype. Our results suggest that the effects of wooden breast are not limited to the pectoralis major muscle and further indicate the importance of research into metabolic changes associated with the myopathy.

7.
Genes (Basel) ; 10(10)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557856

RESUMO

Wooden breast is a muscle disorder affecting modern commercial broiler chickens that causes a palpably firm pectoralis major muscle and severe reduction in meat quality. Most studies have focused on advanced stages of wooden breast apparent at market age, resulting in limited insights into the etiology and early pathogenesis of the myopathy. Therefore, the objective of this study was to identify early molecular signals in the wooden breast transcriptional cascade by performing gene expression analysis on the pectoralis major muscle of two-week-old birds that may later exhibit the wooden breast phenotype by market age at 7 weeks. Biopsy samples of the left pectoralis major muscle were collected from 101 birds at 14 days of age. Birds were subsequently raised to 7 weeks of age to allow sample selection based on the wooden breast phenotype at market age. RNA-sequencing was performed on 5 unaffected and 8 affected female chicken samples, selected based on wooden breast scores (0 to 4) assigned at necropsy where affected birds had scores of 2 or 3 (mildly or moderately affected) while unaffected birds had scores of 0 (no apparent gross lesions). Differential expression analysis identified 60 genes found to be significant at an FDR-adjusted p-value of 0.05. Of these, 26 were previously demonstrated to exhibit altered expression or genetic polymorphisms related to glucose tolerance or diabetes mellitus in mammals. Additionally, 9 genes have functions directly related to lipid metabolism and 11 genes are associated with adiposity traits such as intramuscular fat and body mass index. This study suggests that wooden breast disease is first and foremost a metabolic disorder characterized primarily by ectopic lipid accumulation in the pectoralis major.


Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Regulação da Expressão Gênica , Síndrome Metabólica/genética , Doenças Musculares/genética , Músculos Peitorais/metabolismo , Adiposidade/genética , Animais , Diabetes Mellitus/genética , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...